首页> 外文OA文献 >Computational study of bouncing and non-bouncing droplets impacting on superhydrophobic surfaces
【2h】

Computational study of bouncing and non-bouncing droplets impacting on superhydrophobic surfaces

机译:弹跳和非弹跳液滴撞击超疏水表面的计算研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We numerically investigate bouncing and non-bouncing of droplets during isothermal impact on superhydrophobic surfaces. An in-house, experimentally validated, finite element method-based computational model is employed to simulate the droplet impact dynamics and transient fluid flow within the droplet. The liquid-gas interface is tracked accurately in Lagrangian framework with dynamic wetting boundary condition at three-phase contact line. The interplay of kinetic, surface and gravitational energies is investigated via systematic variation of impact velocity and equilibrium contact angle. The numerical simulations demonstrate that the droplet bounces off the surface if the total droplet energy at the instance of maximum recoiling exceeds the initial surface and gravitational energy, otherwise not. The non-bouncing droplet is characterized by the oscillations on the free surface due to competition between the kinetic and surface energy. The droplet dimensions and shapes obtained at different times by the simulations are compared with the respective measurements available in the literature. Comparisons show good agreement of numerical data with measurements, and the computational model is able to reconstruct the bouncing and non-bouncing of the droplet as seen in the measurements. The simulated internal flow helps to understand the impact dynamics as well as the interplay of the associated energies during the bouncing and non-bouncing. A regime map is proposed to predict the bouncing and non-bouncing on a superhydrophobic surface with an equilibrium contact angle of 155 degrees, using data of 86 simulations and the measurements available in the literature. We discuss the validity of the computational model for the wetting transition from Cassie to Wenzel state on micro- and nanostructured superhydrophobic surfaces. We demonstrate that the numerical simulation can serve as an important tool to quantify the internal flow, if the simulated droplet shapes match the respective measurements utilizing high-speed photography.
机译:我们数值研究了超疏水表面在等温冲击过程中液滴的弹跳和非弹跳。内部的,经过实验验证的,基于有限元方法的计算模型用于模拟液滴的冲击动力学和液滴内的瞬态流体流动。在拉格朗日框架中,利用三相接触线处的动态润湿边界条件,可以精确地跟踪液-气界面。通过冲击速度和平衡接触角的系统变化,研究了动能,表面能和重力能之间的相互作用。数值模拟表明,如果在最大反冲情况下的总液滴能量超过初始表面和重力能量,则液滴会从表面弹起,否则不会反弹。非弹跳液滴的特征在于由于动能和表面能之间的竞争而在自由表面上产生振荡。将通过模拟在不同时间获得的液滴尺寸和形状与文献中的相应测量结果进行比较。比较表明,数值数据与测量结果吻合良好,并且计算模型能够重建测量结果中看到的液滴的弹跳和非弹跳。模拟的内部流动有助于理解弹跳和非弹跳过程中的冲击动力学以及相关能量的相互作用。提出了一种政权图,使用86种模拟数据和文献中提供的测量方法来预测平衡接触角为155度的超疏水表面上的弹跳和非弹跳。我们讨论了在微结构和纳米结构的超疏水表面上从Cassie到Wenzel态的润湿转变的计算模型的有效性。我们证明,如果模拟的液滴形状与利用高速摄影的相应测量值相匹配,则数值模拟可以用作量化内部流量的重要工具。

著录项

  • 作者

    BANGE, PG; BHARDWAJ, R;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号